Posted in Compliance, Exchange Online, In Place Records, Information Management, Records management, SharePoint Online

In place vs in place management of records in Microsoft 365

The ability to manage records ‘in place’ in SharePoint has existed since around 2013. But this is not the same thing as leaving records where they were created or captured and managing them there – ‘in place’.

This post explains the difference between the two ‘in place’ options. In brief:

  • The Microsoft ‘in place’ model is based on making the distinction between non-records content and content declared as records (as per DOD 5015.2), that may be stored in the same SharePoint site, or using Exchange in-place options.
  • The other ‘in place’ model is simply based on leaving records and other content where they were created or captured, and managing it there – including (where necessary) by applying the ‘in place’ options in the previous point.

The Microsoft in-place model


The Microsoft in-place model for managing records in SharePoint is based on the requirement to comply with the US Department of Defense (DOD) standard titled ‘Design Criteria Standard for Electronic Records Management Software Applications’, usually known by its authority number – DOD Directive 5015.2, Department of Defense Records Management Program, originally published in 11 April 1997.

Section C2.2.3 ‘Declaring and Filing Records’ of the standard defines 26 specific requirements for declaring and filing records, including the following points:

  • The capability to associate the attributes of one or more record folder(s) to a record, or for categories to be managed at the record level, and to provide the capability to associate a record category to a record
  • Mandatory record metadata.
  • Restrictions on who can create, edit, and delete record metadata components, and their associated selection lists.
  • Unique computer-generated record identifiers for each record, regardless of where that record is stored.
  • The capability to create, view, save, and print the complete record metadata, or user-specified portions thereof, in user-selectable order.
  • The ability to prevent subsequent changes to electronic records stored in its supported repositories and preserving the content of the record, once filed
  • Not permitting modification of certain metadata fields.
  • The capability to support multiple renditions of a record.
  • The capability to increment versions of records when filing.
    Linking the record metadata to the record so that it can be accessed for display, export.
  • Enforcement of data integrity, referential integrity, and relational integrity.

Microsoft’s initial guidance on configuring in place records management describes how to activate and apply this functionality primarily in SharePoint on-premise. It is still possible to apply this in SharePoint Online (but see below). The SharePoint in place model refers to a mixed content approach where both records and non-records can be managed in the same location (an EDMS with RM capability):

Managing records ‘in place’ also enables these records to be part of a collaborative workspace, living alongside other documents you are working on.

The same link above, however, also refers to newer capability that was introduced with the Microsoft 365 Records Management solution in the Compliance admin portal. This new capability allows organisations to use retention labels instead to declare content as records when the label is applied, which ‘effectively replaces the need to use the Records Center or in-place records management features.’

The guidance also noted that, ‘… moving forward, for the purpose of records management, we recommend using the Compliance Center solution instead of the Records Center.’


A form of in-place management has also been available for Exchange on-premise mailboxes, with in place archiving based on using archive mailboxes – see the Microsoft guidance ‘In-Place Archiving for in Exchange Server‘.

One draw-back of this model is that the (email) records in these mailboxes were not covered by the same DOD 5015.2 rigor as those in SharePoint, but they could at least be isolated and protected against modification or deletion, for retention, control and compliance purposes.

Archive mailboxes, including ‘auto-expanding archives’, also exist in Exchange Online. In the Exchange Online archiving service description, it is noted that:

Microsoft Exchange Online Archiving is a Microsoft 365 cloud-based, enterprise-class archiving solution for organizations that have deployed Microsoft Exchange Server 2019, Microsoft Exchange Server 2016, Microsoft Exchange Server 2013, Microsoft Exchange Server 2010 (SP2 and later), or subscribe to certain Exchange Online or Microsoft365 plans. Exchange Online Archiving assists these organizations with their archiving, compliance, regulatory, and eDiscovery challenges while simplifying on-premises infrastructure, and thereby reducing costs and easing IT burdens.

The new ‘in place’ model

A newer form of in-place records management has appeared with Microsoft 365.

Essentially, the new model simply means leaving records where they were created or captured – in Exchange mailboxes, SharePoint sites, OneDrive or Teams (and so on). and applying additional controls where it is required.

The newer model of in place records management is based on the assumptions that:

  • It will never be possible to accurately or consistently identify and/or declare or manage every record that might exist across the Microsoft 365 ecosystem. For example, it is not possible to declare Teams chats or Yammer messages.
  • Only some and mostly high value or permanent records, will be subject to specific additional controls, including records declaration and label-based retention.
  • The authenticity, integrity and reliability of a some records may be based more on system information (event metadata) about its history, than by locking a point-in-time version.

Microsoft appear to support this dual in place model with their information governance (broader controls) and records management (specific controls, including declaration) approach to the management of content and records across Microsoft 365, as described in the Microsoft guidance ‘Information Governance in Microsoft 365‘, which includes the graphic below, modified to show the relationship between the two in place concepts.

The relationship between Microsoft’s ‘in place’ focussed records management, and managing everything (including records) in place.

In place co-existence

Can both in place models exist? Yes. There is nothing to prevent both in place models existing in the same environment, in which some records may need to be better managed or controlled than others, but it is important to understand the distinction between the two when it comes to applying controls.

Image: Quarantine Building, Portsea, Victoria Australia. Andrew Warland 2021

Posted in In Place Records, Records management, Retention and disposal

Setting retention labels on folders in SharePoint document libraries

A common question asked by many organisations is whether Microsoft 365 (M365) retention policies – labels in particular – can be applied to folders in SharePoint document libraries so the content in those folders will have the same label.

The quick answer is yes, but it is a manual process and – for all its perceived benefits – is likely to be more of an administrative and support burden and not worth the effort. Folders should NOT be thought of as the replacement for ‘files’ (aggregations of individual records), but more like dividers in a lever arch (= the document library).

This post describes how labels can be applied to and work with folders, including in SharePoint sites linked with Teams. It also suggests alternative options.

How retention labels are applied to a library

Retention labels are created in the M365 Compliance portal under either the Information Governance > Labels or Records Management > File Plan sections.

Where labels are created in the Information Governance section of the Compliance portal

Labels created in the Compliance portal do not do anything once created; they must be applied to content in various ways to make them work. This includes by:

  • Publishing one or more labels as part of a retention policy to various locations including SharePoint sites, Exchange mailboxes and OneDrive (but not Teams – see screenshot of available locations below). In this scenario, each label will be visible to – and selectable by – end-users.
  • Auto-applying them to the same locations based on various options, including (for E5) trainable classifiers
  • Adding them to Content Types used in SharePoint Syntex.
Locations where labels can be published

Publishing labels to SharePoint sites

When one or more labels are published to SharePoint sites they don’t do anything until they are ‘manually’ enabled through one of the following options:

  • On each individual document library via the library settings option ‘Apply labels to items in this list or library’ (see screenshot below)
  • On each individual folder in a library (via the information panel, see screenshot below)
  • On each individual object in the library (also via the information panel)

Applying a label to the library

A label can be applied to the entire document library via Library Settings, as shown in the screenshot below.

Note that the ‘None’ option is shorter if no labels have been published here

If the drop-down option is set to ‘None’, and there are no options to choose from, it means that no labels have been published to this SharePoint site.

If labels exist, they will appear in the drop down list (below the default ‘None’). Note that only one label can be set as the default for the library. If the check box ‘Apply label to existing items in the library’ is selected, this will apply the label to all existing items. It will also likely override any existing label that may have been applied.

When the retention label has been applied to a library, the label only applies to the non-folder objects stored in the library as can be seen in the option below. That is, the retention label is NOT applied to the folders by default.

Document library folders without retention labels

The retention label can be seen when the folder is opened:

Content inside a folder, with retention labels applied

Applying a retention label to a folder or document

It is also possible to apply a retention label to a folder or object stored in the folder via the information panel, even when a default library label has been set, as shown below. This can be done on each individual folder including, for Teams-based sites, each folder that maps to a channel.

When applied to a folder in this way, any content stored in the folder will inherit that retention label.

Documents stored inside the June folder have inherited the folder’s label

If a default label has already been applied at the library level, the folder-based label will replace it, although in testing this, one of the original default labels wasn’t replaced automatically as shown below, but could be manually changed via the information panel.

Implications for Teams-based records (Files)

Every Team in MS Teams has an associated SharePoint site linked with the underlying Microsoft 365 Group.

Every non-private channel in the Team maps to a folder in the Documents library of the SharePoint site as can be seen in the two screenshots below. (Every private channel has a separate SharePoint site that would be covered by a separate retention policy).

The Team’s channels
Four channel-linked folders in a Teams-based SharePoint site

Keep in mind that retention labels remove the ability to delete objects stored in the library (including via the ‘Files’ tab in a Team). If end-users are working in Teams, this could be annoying and potentially put them off using Teams. However, end-users can remove the label by navigating to the SharePoint site and removing the label via the Information panel.

Why folder-based retention labels may not be a good idea

The default options to apply retention labels to content stored in SharePoint document libraries are:

  • By applying them at the library level. This can apply the label to all existing (and future) content stored in the library but does not apply to folders.
  • Through the auto-application of labels.
  • Via SharePoint Syntex using labels on Content Types.

Applying retention labels to individual folders in a document library is a manual-intensive process, one that may be a waste of time given the potential number of libraries that can exist and the ease with which they can be removed by end users.

Additionally, applying retention labels to the channel-linked folders of Teams may be pointless if end users:

  • Store documents at the same level as the channel-linked folders; that is, ‘above’ the folder structure.
  • Create new folders via a synced library or SharePoint. These folders are not linked to channels.
  • Create new libraries in the SharePoint site.

Keep it simple

It is very easy to deliberately or inadvertently establish over-complicated retention settings for content stored in SharePoint, especially as there is currently no simple way to see what label has been applied where.

Given the retention period linked with retention policies generally, there is a good chance that the person who applied the labels may not be around when the retention period expires, or to keep an eye on what has been applied or changed over time.

The best retention intentions may be overruled by practical necessity.

The best retention model, in my opinion, is a simple one that does not get in the way of end-users but ensures that records will be kept for a minimum period required. So, instead of applying retention labels to folders, especially on Teams-based SharePoint site libraries, it is recommended to:

  • Start by trying to avoid mixing content with different retention periods in the same SharePoint site or Team, or document library. That will make it easier to manage the retention outcomes. (If you can’t avoid mixing content, you may need to use auto-application of labels including via Syntex or trainable classifiers).
  • Use ‘back-end’ safety net retention policies applied to all SharePoint sites. This ensures a minimum retention period and does not get in the way of end-user activities.
  • Use retention labels on site libraries where more granular retention is required. Ideally, apply them as the default to all the content in a single document library (including the default library for all Teams-based SharePoint sites) and – preferably – only apply the labels when the content is inactive and the library can be made read only, to protect the records from that point.
  • Only use multiple labels on folders when (a) all the labels applied to the site relate to the same function/activity pair or subject matter, and (b) the content is largely inactive. Ideally, avoid folder-based retention to avoid complication in the future.

Posted in EDRMS, In Place Records, Products and applications, Records management, SharePoint Online, Solutions

SharePoint is not an EDRMS

In my February 2021 post A brief history of electronic document and records management systems and related standards, I quoted from a presentation by Philip Bantin in 2001 that summarised the difference between the two systems.

  • An electronic document management system (EDMS) supported day-to-day use of documents for ongoing business. Among other things, this meant that the records stored in the system could continue to be modified and exist in several versions. Records could also be deleted.
  • An electronic records management system (ERMS) was designed to provide a secure repository for authentic and reliable business records. Although it contained the same or similar document management functionality as an EDMS, a key difference was that records stored in an ERMS could not be modified or deleted.

It could be argued that SharePoint began its life in 2001 as an EDMS and began to include ERMS functionality when SharePoint 2010 was released. So, how is it not an EDRMS?

In simple terms, unlike a traditional EDRMS model that was intended to be the repository for all business records, SharePoint is only one of several repositories that are used to store and manage business records. Instead of centralising the storage and management of records, systems such as Microsoft 365 provide centralised management of records wherever they are stored.

The EDRMS model

Almost all EDRM systems since the mid-1990s have had the following characteristics:

  • Compliance with a standard. For example, DOD 5015.2 (1997), AS 4390 (1996)/ISO 15489 (2001), ISO 16175 (2010), VERS (1999), MoReq (2001)/MoReq2, etc.
  • A relational database (for the various functions, metadata and controls (see diagram below) and a separate file share (for the actual content/records), accessed via a user interface.
  • An expectation that most or all (digital) records would be copied from other systems used to create or capture them to the EDRMS for ongoing storage and protection. This outcome might be achieved through integration with other systems, for example to copy emails to the EDRMS.

The integrated EDM/ERM system model was described in the following diagram in 2008 by the International Standards Organisation committee, ISO/TC171/SC2, in its document ‘Document management applications’:

There are two key problems with the EDRMS model:

  • They do not (and cannot) realistically capture, store or classify all business records. Emails have remained a problem in this regard for at least two decades. Additionally, there is now a much wider range of born-digital records that remain uncaptured.
  • Many of the born-digital records that were copied to the EDRMS continue to exist where they were first created or captured.

Any organisation that has been subject to a legal subpoena or Freedom of Information (FOI) request for records will know the limited extent to which EDRM systems provide evidence of all business activities or decision making.

And yet, almost every organisation has a requirement to manage records. There is clearly a disconnect between the various requirements and standards to keep records and the ability to keep them.

But SharePoint (on its own) is not the answer.

Why isn’t SharePoint an EDRMS?

SharePoint was never promoted or marketed as an EDRM system. It is not even a relational database (see this 2019 post by Sergey Golubenko ‘Why SharePoint is no good as a database‘ for details).

To paraphrase from Tony Redmond’s recent (21 March 2021) post ‘SharePoint Hits 20: Memories and Reflections‘, SharePoint was originally designed to allow content (including page-based content in the form of intranets) to be accessed via the web, thereby replacing network file shares.

In practice, most organisations retained their network file shares, built their intranet using SharePoint, and otherwise used SharePoint to manage only some digital content.

It could be argued SharePoint started out as an EDM system and became more like an ERMS when more recordkeeping capability was introduced in SharePoint 2011. But that doesn’t make it an EDRMS in the traditional sense of being a central repository of business records.

The reality is that records are, have been, and will continue to be created or captured in many places:

  • Email systems. In Microsoft 365, Exchange Online mailboxes are also used to store the ‘compliance copy’ of Teams chats messages.
  • Network file shares.
  • SharePoint, including OneDrive.
  • Other online document management systems, including Google Drive.
  • Text, chat and instant messages often created in third-party systems, often completely inaccessible or encrypted.

The type and format of a record can vary considerably. For example:

  • An emoji.
  • A calendar entry.
  • A photograph or video recording (including CCTV recording).
  • The recording of a meeting, in video or transcript form, or both.
  • Virtual reality simulations.
  • Social media posts.
  • 3D and digital drawings (e.g., via digital whiteboards).

And, of course, all the data in line of business systems.

Instead of trying to save records into a single EDRM system, Microsoft 365 provides the ability to apply controls over the management of most records where they were created or captured – in email (including archived social media and other records), Teams chat, SharePoint, or OneDrive, and Yammer.

Is there a need for an EDRMS?

There is nothing stopping organisations acquiring and implementing traditional EDRM systems, or even setting up some SharePoint sites, to manage certain high value or permanent records, including some records that can be copied from other create/capture systems (such as email).

But there is also a need to address the management of all other records that remain in the systems where they were created or captured.

In most modern organisations, this requires broader controls such as applying minimum retention periods at the backend, monitoring usage and activity, and the proactive management of disposals. Not trying to copy them all to SharePoint.

Featured image: Lorenz Stoer, late 1500s.

Posted in Artificial Intelligence, EDRMS, Electronic records, Information Management, Microsoft 365, Products and applications, Records management, SharePoint Online, Solutions

A brief history of electronic document and records management systems and related standards

[NOTE – This post may be updated with additional content – last updated 2 March 2021 with information about DMS systems available in the UK in 1996]

This post provides a brief history of electronic document and records management systems, and standards that had an impact on the latter.

It notes the following:

  • Early electronic records management systems (ERMS) were mostly mainframe-based databases.
  • Electronic document management systems (EDMS) were developed from the 1980s to manage unstructured electronic information.
  • ERM systems began to include unstructured information from the 1990s, especially with the introduction of DOD 5015.2 and MoReq.
  • The rise of XML from the late 1990s had an impact on methods to preserve electronic information.
  • Content management (CM) and knowledge management (KM) systems appeared in the 1990s.
  • Cloud-based EDM systems, and enterprise content management (ECM) appeared from the early 2000s.
  • Cloud based systems challenged installed on-premise EDRM systems.
  • There is a history of acquisitions. (See Mergers & Acquisitions – This Week – MandAsoft to find more details of any acquisitions).

Sources for this information are listed where this is known.

1973 – Plato Notes

A history of ERM and EDM systems must include reference to Lotus Notes.

Lotus Notes began its life in 1973 as Plato Notes, developed by the Computer-based Education Research Laboratory (CERL) at the University of Illinois in 1973. Elements of the Plato Notes system would be developed for PC by Ray Ozzie during the late 1970s. This was picked up by Lotus Development Corporation and in 1984 became Lotus Notes.

An early version of Lotus Notes was released (under contract to Lotus) in 1984. The original vision included on-line discussion, email, phone books and document databases. Eventually the product fell into the ‘groupware’ category. The capability of the product continued to grow and some organisations only used Notes.

Lotus acquired all the rights to Lotus Notes in 1987 and version 1.0 was released on 7 December 1989.

1974 – Compulink Management Center/Laserfiche founded

Compulink Management Center was founded in the US in 1974. It created Laserfiche, the first DOS-based document imaging system, in 1987.

1976 – Micro Focus founded

Micro Focus was founded in the UK in 1976. Its first software product was CIS COBOL, a solution for micro computers. It entered the EDRM market in 2017, see below.

1981 – Enterprise Informatics founded

Enterprise Informatics, a privately-held software company, was founded in 1981 by early pioneers of the document management industry. (Source: LinkedIn company profile) It would later be acquired by Spescom, a South African company.

1982 – FileNet founded

FileNet was founded in 1982 by Ted Smith, formerly of Basic 4. FileNet’s original focus of attention was the storage and management of scanned images but it also developed a workflow software. (Source: Wikipedia article on FileNet)

1983 – GMB/DocFind founded

GMB (named after the original founders, Gillett, Frank McKenna, and Bachmann) was formed in Australia in 1983. In 1984, GMB released DocFind 1.0. DocFind was renamed RecFind in 1986.

For a very detailed history of this company, see The History of GMB/KnowledgeOne.

1984 – The first EDRMS standards – Noark (Norway)

The Norwegian government developed model requirements for EDRM systems in 1984, the first organisation globally to do so. Noark

(Source: ‘The Norwegian Noark Model requirements for EDRMS in the context of open government and access to governmental information‘, by Olav Hagen Sataslaaten, National Archives of Norway, published in the Records Management Journal 11 November 2014.)

Noark has remained active to the present day. (National Archives of Norway – E-Ark Project (

1985 – Tower Software founded (Australia)

Tower Software was founded by Brand Hoff in Canberra in 1985 as a software development company. The company provided and supported enterprise content management software, notably its TRIM (Tower Records and Information Management) product line for electronic records management.

The ‘Tower’ in the company name derives from the telecommunications tower on top of Black Mountain (technically a hill, 812 m high) overlooking Canberra. A graphic of the tower was used in the TRIM logo until the company was acquired by HP’s Software Division in 2008 (see also below).

1986 – Autonomy founded (UK)

Autonomy was founded by Michael Lynch, David Tabizel and Richard Gaunt in Cambridge, UK in 1986 ‘as a spin-off from Cambridge Neurodynamics, a firm specializing in computer-based finger print recognition’.

Before 1987 – Saros Corp

Saros Corp was established in Washington by Mike Kennewick (a former Microsoft employee) before 1987. Saros Corp produced Saros Mezzanine, a client-server document management engine. In 1993, released Saros Document Manager.

1989 – Ymijs (later Valid Information Systems) founded – R/KYV (UK)

Ymijs was founded in the UK in 1989. It sold the R/KYV software initially as a basic document imaging processing system. The company name was changed to Valid Information Systems and R/KYV was further developed as a compliance and records management system ‘… that is widely used by major corporations as well as central and local government authorities and related governmental agencies’ (in the UK).

Valid Information Systems was acquired by Hummingbird in 2003. (Source: ‘Legal Technology Insider‘, 23 July 2003.

1989 – Provenance Systems (later TrueArc) founded (Canada)

Bruce Miller, sometimes noted as ‘the inventor of modern electronic recordkeeping software’, founded Provenance Systems in 1989 where he created ForeMost. The company name was changed to TrueArc. Bruce would go on to found Tarian Software as well in 1999.

TrueArc ForeMost RM would be acquired in 2002 by Documentum (which which it had a long-standing technology partnership).

1990 – Documentum founded (US)

According to this Wikipedia article, Documentum was founded in June 1990 by Howard Shao and John Newton who had previously worked at Ingres (a relational database vendor). They sought to solve the problem of unstructured information.

The first Documentum EDMS was released in 1993. According to the Wikipedia article, ‘This product managed access to unstructured information stored within a shared repository, running on a central server. End users connected to the repository through PC, Macintosh, and Unix Motif desktop client applications.’

1992 – Altris Software (UK)

Altris, established in 1992 (Source: Rob Liddell\’s LinkedIn profile. Rob was one of the co-founders of Altris), developed document management systems, including (according to this South African ITWeb post of 26 October 2001), eB, a ‘configuration management’ application. 

Altris would be acquired by the South African Spescom in 2000.

1992 – Optika ImageFiler / FilePower

Optika Imaging Systems (Colorado, US) sought a trademark for a product called ImageFiler in September 1992. The request was abandoned according to information on the Bizapedia site.

This article titled ‘The Case for 11g‘ (referring to Oracle’s product, see below) noted that Optika’s original software development focus was Image and Process Management (IPM).

An undated (but likely mid to late 1990s) webpage on the Property and Casuality website titled ‘Optika and Xerox Package FilePower with Document Centre‘ noted that ‘Optika Imaging Systems, Inc. and Xerox announced that the two companies will jointly work to integrate Optika’s FilePower with Document Centre digital systems products from Xerox. The combination of the Document Centre and FilePower will provide a complete solution for capturing, managing and distributing large volumes of documents, increasing users’ productivity and significantly reducing labor and capital costs. Optika’s integrated product suite — FilePower — combines imaging, workflow and COLD technology into a unified software package. The Xerox Document Centre 220ST and 230ST combine network scanning, printing, faxing and copying into one hardware device.’

1993 – Workflow Management Coalition formed

The Workflow Management Coalition (WfMC), ‘a consortium formed to define standards for the interoperability of workflow management systems’, was founded in May 1993. Original members included IBM, Hewlett-Packard, Fujitsu, ICL, Staffware and approximately 300 software and services firms in the business software sector.

The WfMC’s Workflow Reference Model was published first in 1995 and still forms the basis of most BPM and workflow software systems in use today. (Source: Undated Gutenberg article)

1993 – Kainos Meridio (UK)

Meridio was developed in 1993 by Kainos (a Northern Ireland company and joint venture between Fujitsu and The Queens University in Belfast) as an electronic document and records management (EDRM) system based on Microsoft products. It would be acquired by HP Autonomy in 2007.

1993 – Saros (US) Document Manager

Saros Corp released Saros Document Manager in mid 1993. The product was said ‘to act as a front-end to the Bellevue, Washington-based firm’s client-server document management engine, Saros Mezzanine’. (Source: Computer Business Review article ‘Saros Sets Document Manager‘ )

ERM before the mid 1990s

Before the arrival of personal computers in offices in the early 1990s, computer mainframes and databases were the regarded by some observers as the only places where electronic ‘records’ (in the form of data in tables) were stored and managed.

A report by the United States General Account Office in July 1999 (GAO/GGD-99-94) titled ‘Preserving Electronic Records in an Era of Rapidly Changing Technology’) stated that, historically (as far back as 1972), NARA’s Electronic Records Management (ERM) guidance (GRS 20) was geared towards mainframes and databases, not personal computers.

The GAO report noted that until at least the late 1990s, there was a general expectation that all other electronic records not created or captured in ERM systems would be printed and placed on a paper file or another system. The original (electronic) records could then be destroyed.

Some early ERM (database) systems, such as TRIM from Tower Software in Australia, were originally developed in the mid 1980s to manage paper files and boxes. Similar systems were developed to manage library catalogues and the old card catalogues started to disappear.

But, although some of it was printed and filed, the volume of electronic records in email systems and stored across network file shares continued to grow. Several vendors released systems that could be used to manage electronic documents (EDM) more effectively than network drives but there was no agreed standard for managing that content as records.

1994 – The DLM Forum and MoReq

From the early 1990s, the European Council sought to promote greater cooperation between European governments on the management of archives. One of the outcomes of a meeting in 1996 was the creation of the DLM Forum. DLM is the acronym of the French term ‘Données Lisibles par Machine’, or ‘machine-readable data’.

One of the ten action points arising from the June 1994 DLM meeting was the creation of ‘Model Requirements for the Management of Electronic Records’, or MoReq, first published in 2001 (see below).

Mid 1990s – Two rival records management models

According to James Lappin, in his paper ‘Rival records management models in an era of partial automation‘ published on 22 January 2021, two rival records management models appeared in the mid 1990s.

North America – separate records repository model 

According to its website, ‘the InterPARES Project was borne out of previous research carried out at the University of British Columbia’s School of Library, Archival and Information Studies. “The Preservation of the Integrity of Electronic Records” (a.k.a. “The UBC Project”) defined the requirements for creating, handling and preserving reliable and authentic electronic records in active recordkeeping systems.’

‘The UBC Project researchers, Dr. Luciana Duranti and Professor Terry Eastwood, worked in close collaboration with the U.S. Department of Defense Records Management Task Force to identify requirements for Records Management Applications (RMA).

The work of the UBC team influenced the development of DOD 5015.2 published in 1997 (see below) and the subsequent development of a range of electronic document and records management (EDRM) systems.

Australia – intervention in business applications model

In 1996, the University of Pittsburgh published the ‘Functional Requirements for Evidence in Recordkeeping Project’, led by David Bearman. This work would influence the development of both MoReq2010 and the ICA standards that became ISO 16175-2010, both of which attempted to define a minimum set of functional requirements for a business application to be able to manage its own records. (Lappin)

1995 – IBM Acquires Notes

Lotus Notes was acquired by IBM in July 1995. By December 1996 it had 20 million users. By the end of 1999, Lotus Notes had extensive capability including ERM and EDM.

Lotus Notes continued to retain a strong presence in the market but its dominance began to be reduced by the arrival of Microsoft’s broader capabilities and other EDM solutions.

1995 – Alpharel (US) acquires Trimco (UK)

According to this Computer Business Review article of 23 November 1995, Alpharel Inc, San Diego was expected to acquire Trimco Group Plc of Ealing, London, a supplier of enterprise-wide document management systems.

1995 – FileNet acquires Saros

FileNet acquired Saros Corporation in 1995 to acquire its electronic document management capability. It was said to have pioneered ‘integrated document management’ (IDM), through a suite that offered document imaging, electronic document management, COLD and workflow. (Source: Wikipedia article on FileNet)

1996 – Australian Standard AS 4390

In February 1996 Australia issued the world’s first national records management standard, AS4390 ‘Records Management – General‘. The standard provided guidance for the implementation of records management strategies, procedures and practices.

Tower Software, the Canberra-based developers of TRIM, contributed to the development of the standard (according to its Wikipedia entry) although the standard did not prescribe requirements for the management of electronic records.

AS 4390 would become internationalised through ISO 15489 in 2002.

1996 – OpenText Corporation (US) – Livelink

OpenText Corporation was founded in 1991 from OpenText Systems. It released Livelink in 1996.

1996 – EDM solutions (UK listing)

The following is a list of EDM systems taken from the Document Management Resource Guide, 1995/96 Edition, kindly provided by Reynold Lemming in 2021. (^ = Original software author entry, all others are system resellers)

ADOS ArchiveDocStore ^Legato Networker, Arcada, DocuBaseRecFind
Adobe Acrobat, Adobe Capture ^Docarus.DMS ^Lotus NotesResmanager ^
Alpharel Image Enabler, Toolkits, API, TurnkeyDocsOpenM-Image ^Retriever
AutoFORM ^Documation ^MacroFicheRoleModel ^
Autodesk WorkCenterE-DOCMacroImageSAROS Mezzanine ^
B-ScanEcoStore ^MatrixSTOR/QM *
CADEXnet ^Epson ImageWise ^MaxDoc ManagerSaros Document Management ^
CAIRS-TMS ^FileMagicMaxDoc and TargetSimplifier
COLDbase ^FilePlusMicroStation TeamMate ^Soft Solutions
CanofileFlowMan ^Myriad ^Software Integration ^
CaptureBase, CaptureFlow, CapturePrint ^FORMTEK. TDM ^NovellSound Practice ^
Cimage: Document Manager, Image Master workflowFrame Technology Document Management ^Oasis RSD, COLD v.2.1 ^Staffware ^
ColdStore ^HDK2Odesta Livelink ^Status/IQ, inSign ^
Complete PMEHyperdrive ^OptechStorofile 650 ^
Concept Suite: Inquisitor, Interrogator, Detective ^ImageTekOptiFicheSydneyPLUS ^
Cyco Automanager workflowImagetreeOptiIMAGETRIP
D.A.R.T.S. ^Imagewise ^Optigraphics LDSTRIPscan
DB/TextWorks ^ImviewOptika FilePower, FileMagic, ImageSoftTeleForm OCR/ICR *
DCS PowerNET ^InConcert ^Optika File Power FP MultiTrimco
DM2 ^Intelligent Information Capture (IIC)PAFEC EDM ^Ultra
DOCS Open ^Interleaf: 6, RDM, World View, Cyberleaf ^PC DOCS OpenViewStar System Release 4 ^
Datascan ^IsysPageNet ^Visual Recall ^
DataWise ^KeyfilePaperClipVisual Workflow
Deimos Document Management System ^Kodak ImageryPaperoute ^WinWork ^
Displaywise ^LaserImage, LaserArcPaperwiseWorkCenter Issue Control, Revision Control ^
DocFind ^Lasercom ^PowerVision ^
DocPRO ^Lasertrack Imaging System ^QStar: Axxess / Server / Worksgroup / Enterprise ^

1996 – Various EDM solutions

The March 1996 edition of Engineering Data Management included a number of updates on electronic document management solutions in the market at that time. Note that Trimco and Alpharel are listed separately; this may because Alpharel’s acquisition of Trimco had not been completed by that time.

  • Alpharel (San Diego, CA): Document Management solutions – Enabler, FlexFolder, RIPS, Toolkit API. Wisdom, a product that facilitated internet access to participating electronic document vaults.
  • Auto-trol Technology (Denver, CO): CENTRA 2000, document management, workflow, PDM, change management and messaging.
  • Cimage Enterprise Systems (Bracknell, UK): Document Manager for Windows.
  • Documentum, Inc. (Pleasanton, CA): Documentum Accelera for the World Wide Web and Documentum UnaLink for Lotus Notes.
  • Interleaf (Waltham, MA): Interleaft 6 SGML, a solution for publishing SGML doocuments. Intellecte/BusinessWeb, a document management solution that allowed organisations to access enterprise document repositories from the internet.
  • Trimco (Ealing, UK): Document management systems.

Alpharel changed its name to Altris Software (US) in October 1996, according to this Telecompaper article published the same month.

From 1996 – Germany’s DOMEA project

In 1996, the Coordinating and Advising Agency of the Federal Government for Information Technology in the Federal Administration (KBSt) introduced a pilot project named Document Management and Electronic Archiving in computer-assisted business processes (DOMEA).

Under the framework of DOMEA, a project group was set up in 1998 to find solutions for the disposition and archiving of electronic records. The goal was to find a suitable and efficient way for the disposition of electronic records created and maintained in office systems. Its “Concept for the Disposition and Archiving of Electronic Records in Federal Agencies,” containing recommendations for managing electronic records was published in September 1998. (Source: The Free Library article)

Late 1990s – EDMS vs ERMS

Electronic document management systems (EDMS) and electronic records management systems (ERMS) were regarded as separate types of system from the late 1990s until at least 2008.

According to Philip Bantin in August 2002:

  • An EDMS was said to support day-to-day use of documents for ongoing business. Among other things, this meant that the records stored in the system could continue to be modified and exist in several versions. Records could also be deleted.
  • An ERMS was designed to provide a secure repository for authentic and reliable business records. Although it contained the same or similar document management functionality as an EDMS, a key difference was that records stored in an ERMS could not be modified or deleted. (The concept of ‘declaring a record’ may be related to this point).

(Source: Presentation by Philip Bantin, University Archivist at the University of Indiana, dated 18 April 2001)

The difference between the two types of system endured for at least a decade. By the end of the 1990s, four main EDRMS options had emerged:

  • Extending an existing EDM product capability to include ERM.
  • Extending an existing ERM capability to include EDM.
  • Creating new ERM products (technically also with some EDM capability).
  • Integrating separate EDM and ERM products.

1997 – DOD 5015.2

According to the 1999 GAO report quoted above, for several years prior to 1997, NARA worked with the US Department of Defense, considered ‘one of the agencies that is most advanced in its ERM efforts’.

The outcome of this work was the release in November 1997 of the DOD standard titled ‘Design Criteria Standard for Electronic Records Management Software Applications’ usually known by its authority number – DOD Directive 5015.2, Department of Defense Records Management Program, 11 April 1997.

The GAO report stated that ‘ERM information systems that were in place before the approval of this standard must comply with the standard by November 1999’.

It added that US agencies ‘were confronted with many ERM challenges’ from the ever-increasing volume of digital records, including the ability to preserve and access those records over time. The ‘Year 2000 problem’ was drawing attention away from the issue.

Nevertheless, by 2 June 1999, nine companies were certified as compliant with the DOD standard. Some, it noted, were standalone ERM software, while others were an integrated solution.

An interesting small note on page 11 of the GAO report noted that ‘it is important that ERMS software requires users to make no more than two or three extra keystrokes, and that users realize there is a benefit to this additional ‘burden’.

From 1997 – SER eGovernment (Germany)

SER eGovernment was developed for the German/Austrian market following the release of the German eGovernment standard, DOMEA in 1997.

1998 – Documentum goes online

In 1998, Documentum released its Web Application Environment, a set of internet extensions for EDMS, offering web access to documents stored within an EDMS repository. Various additional products were acquired and their functionality added to the Documentum system.

1998 – Optika eMedia released

Optika released eMedia, ‘a software and methodology product designed to manage business transactions within an organization, across extranets, and throughout the supply chain’, in late 1998. (Source ‘Optika Delivers App to Manage Business Transactions‘) Optika eMedia was said to be ‘a workflow enabled replacement for an imaging solution named FilePower’.

1998 – FileNet Panagon suite released

In 1998, FileNet released its Panagon suite of products. This included Panagon Content Services that was previous Saros Mezzanine. (Source: Wikipedia article on FileNet)

1999 – International differences

The 1999 GAO report noted differences between the US, UK, Australia and Canada on their approach to ‘common ERM challenges’.

  • Australia was said to have ‘strong central authority (including for compliance audits) and decentralised custody’ (except when the records are transferred to permanent retention).
  • Canada had ‘vision statements rather than specific policies’ and also had decentralised custody, but agencies could transfer records at any time to the archives.
  • The UK had broad guidelines put into practice by individual agencies.

1999 – the UK PRO standard released

The UK Public Records Office (PRO, later The National Archives, TNA) released a standard in 1999 designed ‘to provide a tool for benchmarking the ability of government departments to support electronic records management’. This standard would be replaced by TNA 2003. (Source: ‘ERM System Requirements’, published in INFuture, 4-6 November 2009, by, Marko Lukicic, Ericsson)

End of the 1900s – XML

By the end of the 20th century it was becoming clear (to some) that XML would likely play a strong role in the standardisation of electronic record formats and their management over time.

XML-based record structures meant that electronic records could contain their own ‘metadata payloads’ rather than being independent objects defined in a separate system (like a library catalogue describes books on shelves).

The establishment of XML-based formats would (after about 20 years) begin to change the way in which records would be managed, although paper records and the paradigm of managing records in pre-defined containers would continue to persist, largely because of the standards developed to manage electronic records – in particular DOD 5015.2.

1999 – EDM/early ERM products

The following is a collated list of EDM (and related) products collated in November 1999:

  • Autonomy Portal in a Box
  • CompuTechnics (1990 to 1999)/Objective (from 1999)
  • DOCS
  • Eastman Software (Imaging, OCR)
  • EDM Software (UK) and SER (Germany)
  • Excalibur RetrievalWare
  • FileNet, incorporating Panagon Integrated Document Management
  • Fulcrum (acquired by PC DOCS in 1997)
  • GMB (later KnowledgeOne) RecFind/RecQuery
  • Hummingbird (from 1999 with acquisition of PC DOCS)
  • Insight Technologies Knowledge Server (IKS) / Document Management System (DMS)
  • Intraspect Knowledge Server (IKS) (KM)
  • Lotus Notes
  • Onyx Enterprise Portal, with integration to various EDM applications
  • Open Text Livelink
  • Pitney Bowes Digital Document Delivery (D3)
  • Oracle
  • Osyssey (ISYS)
  • PC DOCS (acquired by Hummingbird in early 1999)
  • ReadSoft (OCR processing)
  • RecordManager
  • Tower Software / TRIM Captura
  • Tower Technology
  • Verity (KM)

1999 – Tarian Software founded

Tarian Software was founded in Canada in 1999 by Bruce Miller, the founder of Provenance Systems (later TrueArc) and creator of ForeMost. Tarian developed the Tarian eRecordsEngine, an embedded electronic recordkeeping technology for business application software. Tarian was the first e-Records technology in the world to be certified against the revised 5015.2 June 2002 standard. Tarian was acquired by IBM in 2002.

1999 – The Victorian Electronic Records Strategy (VERS)

The (Australian) Victorian government’s Public Records Office (PROV) published a standard for the management of electronic records in 1999, Standard 99/007 ‘Standard for the Management of Electronic Records’. The standard, usually known as VERS, defined the (XML-based) format required for the transfer of permanent records to the PROV.

The Standard noted that:

  • Records must be self-documenting. It is possible to interpret and understand the
    content of the record without needing to refer to documentation about the system in
    which it was produced
  • Records must be self-contained. All the information about the record is contained
    within the record itself
  • The record structure must be extensible. It must be possible to extend the structure of
    the record to add new metadata or new record types without affecting the
    interoperability of the basic structure.

Several EDRMS vendors developed the capability to create VERS encapsulated objects (VEOs) as required by the standard.

2000 – Spescom (South Africa) acquires Altris (UK)

The South African company Spescom acquired the UK firm Altris Software in 2000, as noted in this (South Africa) ITWeb article of 3 May 2000. Altris was described in the article as ‘a global leader in integrated electronic document management software, with well established channels to international markets’. As a result of this acquisition, Altris UK was renamed Spescom Ltd (UK).

The same journal announced in 2001 that Spescom KMS was ‘the UK operation of Spescom Limited’s US based subsidiary, Altris Software Inc, which specialises in the provision of asset information management software to markets including transportation, utilities and telcos’.

From 2000 – Microsoft adopts XML for Office documents

In 2000, Microsoft released an initial version of an XML-based format for Microsoft Excel, which was incorporated in Office XP.

In 2002, a new file format for Microsoft Word followed. The Excel and Word formats, known as the Microsoft Office XML formats (with an ‘x’ on the end of the document extension), were later incorporated into the 2003 release of Microsoft Office.

Microsoft’s XML formats, known as Open Office XML, later became ECMA 376 in 2006 and later ISO 29500 in 2008 ‘amid some controversy’ over the need for another XML format (see below).

Before 2001 – Intranet Solutions (later Stellent)

Intranet Solutions had developed software called’IntraDoc!’. The product was briefly renamed Xpedio! before the company and product were renamed Stellent in 2001. (Source: ‘Wikipedia article on Oracle Acquisitions‘)

2001 – EDM systems with RM functionality

The following is a list of ‘EDM systems with records management’ functionality available by early 2001:

  • TRIM (Tower Software, Australia) – integrated ERM and EDM.
  • ForeMost Enterprise v2 (TrueArc Inc) – ERMS
  • Tarian eRecords Engine v1.0 (formerly e-Records v1.0)(Tarian) – ERMS
  • iRIMS 2001 (Open Text Corp) – ERMS
  • Objective 2000 (Objective Corp, Australia) – ERMS
  • Hummingbird RM Family 4.0 (Hummingbird, Canada) – ERMS (later acquired by Open Text)
  • FileSurf 7.0 (MDY Advanced Technologies) – ERMS
  • R2M (Relativity Records Manager v2 (Relativity Inc) – EDMS with added records management functionality.
  • eManage 2000 (ByteQuest Technologies) – knowledge management (KM) integrated with records management.
  • FileNET IDM Content Services 5.1.1/ForeMost Enterprise 2.0 – EDMS with integrated records management.
  • IBM e-Records Solution (IeRS) v1.0 – IBM’s content management (CM) solution integrated with Tarian eRecords v1.0.
  • Work Manager/ForeMost (Eastman Software) – combined the DM, imaging and workflow of Work manager with the RM capabilities of ForeMost.
  • (Source: Presentation by Philip Bantin, University Archivist at the University of Indiana, dated 18 April 2001).

Many of the products above were sold internationally on the basis of their compliance with DOD 5015.2 even though that was a US-specific standard.

2001 – Birth of SharePoint

Microsoft released SharePoint in 2001. It was born out of a combination of Office Server and Tahoe.

  • Office Server provided the simplest of network administration actions
  • Tahoe expanded on the email, calendaring, contacts, and to-do list technology contained within Exchange.

However, it was not until the release of Office 2003 that SharePoint (rebranded as Windows SharePoint Services) provided collaboration and other functionality.

(Source: History of SharePoint from PortalFront hosting)

Early 2000s – The DM, KM and CM mix

In addition to the EDMS/ERMS differences, organisations were also seeking solutions for knowledge management (KM) and content management (CM).

CM solutions were usually portal-based options that mostly became some form of intranet.

Some of the options in the early 2000s included:

  • Hummingbird’s PowerDOCS for DM and CyberDOCS as the web client for the DM solution, along with Hummingbird’s (formerly Fulcrum) Knowledge Server for KM and PD Accord for web-based collaboration, with the Hummingbird Enterprise Information Portal (EIP) as the portal solution. Plumtree Corporate Portal could also be used as an Enterprise Portal.
  • iManage’s DeskSite for DM and WorkTeam for collaboration. For KM, WorkKnowledge Server and Concept Search (based on the Autonomy Server). The portal to link all of these was called WorkPortal.
  • Open Text’s Livelink for DM, KM and collaboration.
  • Elite’s Encompass, built on Microsoft’s new SharePoint Portal Server (SPS).
  • Autonomy Server for KM, with Plumtree Corporate Portal as the portal.
  • Documentum’s DM and CM product coupled with Plumtree Corporate Portal.

Digital Asset Management (DAM) systems, used to manage other types of digital content such as photographs, also appeared around this time.

Early 2000s – RM meets AI

Don Lueders noted in his post An Industry Pioneer on Records Management and Artificial Intelligence ( that ‘in the early 2000’s TruArc released a product called AutoRecords. AutoRecords was the very first records management solution brought to market that leveraged artificial intelligence to automatically classify electronic records.’

2001 – EDMS Vendors

Information Technology Decisions published a paper on DOD 5015.2 certified products in November 2001 (original source/location has been lost). It noted that there were two types of products:

  • Products that started life as electronic document management (EDM) systems. Examples included Documentum, Livelink, and DOCS Open.
  • Products that started life as electronic recordkeeping (ERK/ERM) systems. Examples given included Tower Software’s TRIM, Foremost, iRIMS, Cuadra Star.

The presentation noted that DOD 5015.2 certification was based on alternative options:

  • Standalone. For example, True Arc Foremost, TRIM, iRIMS, Cuadra Associates Star, Relativity Records Manager, Hummingbird RM 4.0, Tarian eRecords, MDY/FileSurf, Cimage and Access Systems, Highland Technologies Highview-RM, Open Text, Livelink
  • Partnership. For example, Saperion with e-Manage 2000, Impact Systems eRecords Manager, FileNet with Foremost.

The report included three interesting points:

  • Both EDMS and ERKS required an enterprise view of information.
  • An EDMS is driven by business process requirements.
  • An ERKS (ERMS) is driven by enterprise requirements for the long-term preservation of information.

2001 – The first MoReq

The first version of MoReq was published in 2001. Volume 1 was 500 pages long.

MoReq emphasised the central importance of an electronic records management system, or ERMS. Its stated purpose was:

  • To provide guidance to organisations wishing to acquire ERMS.
  • As a tool to audit or check an existing ERMS.
  • As a reference document for use in training or teaching.
  • To guide product development by ERMS suppliers and developers.
  • To help define the nature of outsourced records management solutions.

Few, if any, products were certified against this version of MoReq.

2002 – Optika Acorde

Optika eMedia was rebranded to Optika Acorde in 2002, according to this website ‘The Case for 11g‘.

A June 2002 Gartner report titled ‘Optika Acorde Document Imaging, Workflow and Collaboration Suite‘ noted that Optika Acorde was an ‘integrated software family for managing the content associated with business transactions’ leveraging ‘Optika’s core strengths in document imaging, workflow and enterprise report management.’

2002 – FileNet BrightSpire, later P8 ECM

FileNet released BrightSpire in 2002. This product ‘leveraged the experience gained from integrated document management, web content management and workflow into what became ECM. (Source: Wikipedia article on FileNet)

By 2002 – Enterprise Content Management (ECM)

The term ‘Enterprise Content Management’ (ECM) began to appear more frequently by 2002. The Wikipedia post on ECM noted that ECM technologies descended from ‘electronic Document Management Systems (DMS) of the late 1980s and early 1990s’.

ECM promised:

  • The integration of records management (RM) with business practices.
  • The capability for integration between RM products, EDM, various other digital products (such as OCR/character recognition technologies), and web publishing products.
  • Incorporation of Knowledge Management (KM) concepts.

The key word here was ‘integration’ with EDM and other systems, rather than standalone systems. Web-based access became increasingly essential. IBM’s acquisition of Tarian, Documentum’s acquisition of TrueArc’s Foremost were examples of these integrations. (see below)

According to the Wikipedia article on ECM: ‘Before 2003, the ECM market was dominated by medium-sized independent vendors which fell into two categories: those who originated as document management companies (Laserfiche, Saros, Documentum, docStar, and OpenText) and began adding the management of other business content, and those who started as web content management providers (Interwoven, Vignette, and Stellent) tried to branch out into managing business documents and rich media’.

The emergence of ECM quite possibly created the first challenge to centralised ERM through the integration of multiple elements, some of which created, captured or stored records in ever increasing formats.

2002 – OpenDocument XML format

According to the Wikipedia article on the OpenDocument standard, the OpenDocument standard was developed by a Technical Committee (TC) under the Organization for the Advancement of Structured Information Standards (OASIS) industry consortium. Sun and IBM apparently had a large voting influence but the standardization process involved the developers of many office suites or related document systems. The first ODF-TC meeting was held in December 2002.

2002 – An updated GAO report into electronic records

The US General Accounting Office (GAO) released a new report in June 2002 titled ‘Information Management: Challenges in Managing and Preserving Electronic Records’ (GAO-02-586). This report, which was more detailed than the earlier 1999 one, noted among other things that:

  • The DOD had by March 2002 certified 31 applications against standard 5015.2.
  • Progress had been made on the development of the Open Archival Information System (OAIS) model which, while initially developed by NASA for archiving the large volume of data produced by space missions, could be applied to ‘any archive, digital library or repository’. XML-based solutions were considered the most likely to be accepted.

2002 – IBM acquires Tarian Software

IBM acquired Tarian Software in late 2002, ‘bolstering its leadership in ECM’.

From that date, IBM released the IBM Records Manager Version 2.0 (IRM), previously known as the Tarian eRecords Engine (TeRe). Tarian’s e-Records management technology was integrated into IBM’s software offerings, including IBM Content Manager, DB2 database and Lotus software. (Source: IBM press release)

2002 – Documentum 5 and TrueArc Foremost acquisition

Documentum released Documentum 4i, its first Web-native platform, in 2000. In 2002, it launched Documentum 5 as ‘a unified enterprise content management (ECM) platform for storing a virtually unlimited range of content types within a shared repository’.

Documentum acquired TruArc’s Foremost product in October 2002. The Documentum Wikipage above noted that this acquisition ‘added records management capabilities and augmented Documentum’s offerings for compliance solutions.’ The press release cited in this paragraph noted that ‘Documentum and TrueArc are existing technology partners and have worked together to provide an integration for TrueArc’s enterprise-scalable records management solution with the Documentum ECM platform.’

2003 – TNA 2003

The National Archives (TNA) released an updated version of its PRO standard in 2003, known as TNA 2003. This standard would be superseded by MoReq2. (Source: @ZenInformation on Twitter, 12 February 2021).

2003 – EMC acquires Documentum

EMC acquired Documentum in 2003. (Source: EMC offers $1.7 billion in stock for Documentum, October 2003))

2003 – FileNet P8 Records Manager

FileNet released P8 Records Manager in 2003. (Source: Wikipedia article on FileNet)

2003 – Hummingbird acquires Valid Information Systems R/KYV

Hummingbird acquired Valid Information Systems R/KYV product in 2003.

(Source: ‘Legal Technology Insider‘, 23 July 2003)

2003 – Open Text acquires SER eGovernment

In October 2003, Open Text acquired the (German) DOMEA-certified SER eGovernment Deutschland GmbH, based in Berlin, Germany as well as SER Solutions Software GmbH, based in Salzburg, Austria. (Source: Open Text Acquires SER eGovernment)

From 2003 – CNIPA (Italy)

The Italian Centro Nazionale per l’Informatica nella Pubblica Amministrazione (CNIPA) published a protocol for the management of electronic records, Protocollo Informatico in 2003.

CNIPA was renamed DigitPA in 2009 and Agenzia per I’Italia digitale (AGID) in 2012. AGID is responsible for defining standards for the management of electronic records in Italian government agencies. (Source: Protocollo Informatico)

Mid 2003 – The challenges of Enterprise Records Management

In Industry Trend Reports of May 2003, Bruce Silver (of Bruce Silver Associates) made the case for Enterprise Records Management in the wake of various ‘scandals’ involving the management of records at the time, including Enron/Anderson.

Silver argued that EDM, email archive, and back-up solutions did not meet the ‘new statutory and regulatory records management requirements’ – DOD 5015.2, SEC Rules 17a-3 and 17a-4, NASD Rules 2210, 3010, and 3110, NYSE Rules 342 and 440, ISO 15489 and MoReq.

Silver also noted that an effective (‘total’) ERM solution would ‘be implemented as an extension of the company’s ECM infrastructure’, providing for a single interface for all records stored in multiple locations ‘including third-party document management repositories in addition to the email system and network file system’.

2003 – Key integrated EDM/RM vendors

The following is a list of ‘key vendors in the (Integrated Document Management) IDM Market Space’ in October 2003. The list is believed to have come from a Butler Group report:

  • Documentum 5. EDMS, web content, ERM, RM (through acquisition), collaboration, DAM.
  • FileNet P8 Image Services. Content management, web content, image management, RM.
  • Gauss VIP Enterprise 8. Web content, DM, Imaging, ERM. (Acquired by Open Text)
  • Hummingbird Enterprise 5. Full IDM suite (DM, KM, portal, collaboration, workflow, imaging, RM)
  • Hyland Software OnBase. Integrated IDM but lacked strong web content, RM and collaboration.
  • IBM Content Manager. ERM and worfklow.
  • Identitech FYI. Integrated IDM.
  • Information Management Research (IMR) Alchemy. IDM.
  • Laserfiche Document Imaging. Integrated IDM including EDM, ERM.
  • Legato ApplicationXtender, EmailXtender, DiskXtender. Integrated IDM.
  • Open Text Livelink.
  • Optical Image Technology (OIT) DocFinity. Integrated IDM.
  • Optika Acorde. Primarily for images and ERM. Not strong CM, RM or collaboration. Acquired Select Technologies for RM.
  • Tower Technology IDM, Seraph. Integrated IDM.
  • Westbrook Fortis Suite, File Magic. Integrated IDM.

2004 – Stellent acquires Optika

Stellent acquired Optika in early 2004. At this stage, Stellent’s primary product was Universal Content Management (UCM). (Source: Wikipedia article on Oracle Acquisitions)

The report of the sale in The Register stated that Stellent’s CEO said that ‘customers are looking to consolidate their content management needs, including imaging, business process management, web content management and record management with one vendor.’ The new product line was named Stellent Imaging and Business Procss Management (IBPM). The article also noted that Oracle would probably acquire Stellent following this acquisition (see 2006, below).

2004 – ReMANO (Netherlands)

In 2004, the Netherlands government established a catalogue of software specifications for ERM systems (ReMANO) used by Dutch government bodies. (Source: ‘ERM System Requirements’, published in INFuture, 4-6 November 2009, by, Marko Lukicic, Ericsson)

ReMANO was replaced by NEN2082 – Eisen voor Functionaliteit van Informatie- en Archiefmanagement in programmatuur” in 2008. (NEN 2082:2008 nl)

2005 – C6 (France) builds D2 on top of EMC Documentum

The French ECM company C6 built a solution named D2, ‘a fully configurable web application for creating, managing, storing and delivering any type of information’, on top of EMC’s Documentum. (Source: C6 website ‘Company’ tab).

2005 – ELAK (Austria)

A project to introduce electronic filing (ELAK) commenced in Austria late 2001 and was completed in 2005. The solution was based on standard software products (e.g. Fabasoft e-Gov-Suite, MS-Office). (Source (ELAK – The e-filing system of the Austrian Federal Ministries)

2006 – The National Archives of Australia ERMS standard

The National Archives of Australia (NAA) released its ‘Functional Specifications for Electronic Records Management Systems Software in February 2006. (ISBN 1 920807 34 9). The introduction noted that:

  • (The document) provided Australian Government agencies with a set of generic requirements for ensuring adequate recordkeeping functionality within electronic records management systems (ERMS) software.
  • Agencies were encouraged to make use of the ERMS specifications when designing or
    purchasing new, or upgrading existing, ERMS software. They could also
    be used when auditing, assessing or reviewing an agency’s existing ERMS software.
  • The requirements were not intended to be a complete specification, but
    rather provide a template of key functional requirements that agencies may
    incorporate into their tender documentation when preparing to select and purchase
    new ERMS software. Agencies were expected to assess and amend the
    functional requirements, and select requirements that best suit their own business
    and technical requirements and constraints.

Very few products met the specific requirements of the ERMS specifications which led to some suggestion at the time that it limited choice.

2006 – Rival XML Office document standards

The OpenDocument (ODF) standard was published as ISO/IEC 26300 in 2006.

Microsoft submitted initial material to the Ecma International Technical Committee TC45, where it was standardized to become ECMA-376, approved in December 2006. It was released as ISO 29500 in 2008.

According to the Wikipedia article on Open Office XML (OOXML), ‘The ISO standardization of Office Open XML was controversial and embittered’, as it seemed unnecessary to have two rival XML standards.

2006 – The world of collaboration

The Butler Group published a paper titled ‘Document Collaboration – Linking People, Process and Content’ in December 2006. The report noted that EDM systems had helped improve internal efficiency but there was now a need to ‘extend these systems to partners and stakeholders’ and deliver ‘sophisticated collaborative experiences’.

The paper listed the following EDM products:

  • Adobe Acrobat family
  • EMC eRoom
  • IBM Notes/Domino, Workplace collaboration services, QuickPlace
  • Microsoft Office 2007
  • Open Text Livelink ECM – eDOCS (incorporating the former Hummingbird product suite acquired by Open Text in 2006)
  • Oracle Collaboration Suite, Content DB and Records DB
  • Stellent Collaboration Management
  • Vignette

2006 – Spescom Software Inc

A US SEC submission in January 2006 noted that Spescom Software Inc, a San Diego-based provider of computer integrated systems was the successor to Alpharel Inc and Altris Software Inc.

2006 – Oracle acquires Stellent

A 2006 Oracle press release titled ‘Oracle Buys Stellent‘ stated that Stellent was a global provider of enterprise content management (ECM) software solutions that included Document and Records Management, Web Content Management, Digital Asset Management, Imaging and Business Process Management, and Risk and Compliance. It also noted that the acquisition would ‘complement and extend Oracle’s existing content management solution portfolio’. Despite the acquisition, the ‘Stellent’ name persisted.

2006 – IBM acquires FileNet

IBM acquired FileNet in 2006. (Source: Wikipedia article on FileNet)

2006 – Google enters the online EDM productivity and collaboration market

In 2006, Google launched Google Apps for Your Domain, a collection of cloud computing, productivity and collaboration tools, software and products. Various apps and elements were acquired and/or added over the years but a key one from an EDM point of view was Google Docs (Wikipedia article). However, Google Docs had no RM capability.

A ZDNet article in June 2007 noted that Google Apps offered a tool for switching from Exchange Server and Lotus Notes, making Google a real alternative to Microsoft and IBM. Google Apps would later be rebranded G-Suite in 2016.

2007 – Spescom exits the EDM market / Enterprise Informatics

In 2007, Spescom exiting the enterprise software sector with the sale of its US operation Enterprise Informatics. (Source – Wikipedia article on Spescom, original reference no longer accessible).

Enterprise Informatics, originally founded in 1981, continued in existence as a subsidiary of Bentley Systems, Incorporated. It continued to market a suite of integrated document, configuration, and records management software products, mostly under the name eB.

2007 – Zoho enters the online EDM collaboration market

The India-based Zoho Corporation, known as AdventNet Inc from 1996 to 2009, released Zoho Docs in 2007.

2007 – HP Autonomy acquires Meridio

Meridio was acquired by HP Autonomy (a company that had had a long business partnership with Kainos) in 2007. The parent company Kainos continued to work with SharePoint-based solutions.

2007 – EDRMS vendors

Forrester released a report into electronic records management vendors in early 2007. The products that it evaluated were as follows:

  • CA MDY FileSurf v7.5 ^
  • EMC Records Manager 5.3
  • IBM FileNet P8 Records Manager v3.7 ^
  • IBM Records Manager v4.1.3 #
  • Interwoven Records Manager v 5.1 *
  • Meridio Document and Records Manager v4.4 *
  • Open Text Livelink ECM – Records Management v3.8 ^
  • Open Text Livelink – eDOCS RM (formerly Hummingbird) v6.0.1
  • Oracle (formerly Stellent) Universal Records Management v7.1 #
  • Oracle Records DB v1.0 ~
  • Tower Software TRIM Context v6.0 *
  • Vignette Records & Documents v 7.0.5
  • (Forrester assessment: ^ = leaders, # = close behind leaders, * = have hurdles to remain competitive’, ~ = basic functionality only)

2008 – NEN 2082

The Dutch government replaced ReMANO with NEN 2082 ‘Eisen voor functionaliteit van informatie- en archiefmanagement in programmatuur’ (‘Requirements for functionality of information and archive management in software’) in 2008 (NEN 2082:2008 nl). NEN 2082 was derived from MoReq, DOD 5015.2 and Australian standards. (See Eric Burger’s blog post ‘Nee, NEN 2082 is geen wettelijke verplichting‘ about its legal standing)

2008 – MoReq2

MoReq2 was published in 2008. It included new sections to support the testing of ERMS software for compliance with the standard. MoReq2 included the following vendors on its panel (Acknowledgements section):

  • Docuware, Germany
  • EDRM Solutions, USA
  • EMC, Canada
  • ErgoGroup AS, Norway
  • Fabasoft, UK
  • FileNet, UK
  • Fujitsu, UK
  • Getronics, UK
  • Haessler Information, Germany
  • IBM, UK
  • ICZ, Czech Republic
  • Lockheed Martin, USA
  • Meridio, UK
  • Objective Corporation, UK
  • Open Text Corporation, UK
  • SAPERION, Germany
  • SER Solutions Deutschland, Germany
  • Tower Software, UK

Both MoReq and MoReq2 were based on the premise of a central ERMS being acquired and implemented by organisations to manage unstructured records, the types of records that are stored across network drives and in email systems. MoReq2 specifically clearly excluded the management of ‘structured data … stored under the management of a data processing application’. (Source: MoReq2, section 1.2 ‘Emphasis and Limitations of this Specification’, page 12.)

The first software product certified against MoReq2 was Fabasoft Folio. It was the only certified product until June 2014.

2008 – EDMS and ERMS

In 2008, the International Standards Organisation, under ISO/TC171/SC2 ‘Document management applications’ proposed a framework for the integration of EDM and ERM systems. The definitions contained in that framework document noted that:

  • An EDMS was used to manage, control, locate and retrieve information in an electronic system.
  • An ERMS was used to manage electronic and non-electronic records according to accepted principles and practices of records management.
  • An integrated EDRMS would combine both capabilities.

Section 6 of the report described general (but fairly detailed) functional requirements for an integrated EDMS/ERMS, outlined in the following diagram:

2009 – Autonomy acquires Interwoven

In 2009, HP Autonomy acquired Interwoven, a niche provider of enterprise content management software mostly to the legal industry. It primarily competed with Documentum in this space. Interwoven became Autonomy Interwoven and Autonomy iManage.

2010 – MoReq2010

MoReq was completely revised and published as MoReq2010 in 2010. There were key differences with its predecessor versions.

  • It de-emphasised, but did not remove, the idea of an ERMS being the central or sole recordkeeping system or repository for organisations.
  • It emphasised the need for line of business systems to incorporate a minimum, defined level of recordkeeping functionality.
  • It brought a degree of practicality about the management of records in other systems.
  • It provided for interoperability between all MoReq compliant systems, based on a common XML language.

MoReq2010 established ‘… a definition of a common set of core services that are shared by many different types of records systems’. It provided a set of modules that could be incorporated into any software solution, including line of business applications, so they can be ‘MoReq compliant records systems’ (MCRS).

2010 – Google’s DM capability enhanced

In March 2010, Google acquired DocVerse, an online document collaboration company. DocVerse allowed multiple user online collaboration on Microsoft Word documents, as well as other Microsoft Office formats, such as Excel and PowerPoint. (Source – Wikipedia article on Google Docs)

2010 – SharePoint gains (some) RM wings

SharePoint 2010 included a range of recordkeeping functionality. According to a web page titled ‘SharePoint 2010: Recordkeeping Considerations‘ by State Records NSW:

‘Microsoft SharePoint 2010 is a software product with a range of uses, including website development, content management and collaboration. SharePoint allows users to collaborate on the creation, review and approval of various types of content, including documents, lists, discussions, wiki pages, web pages and blog posts. SharePoint is not a recordkeeping system (i.e. a system purposely designed to capture, maintain and provide access to records over time). When implemented ‘out of the box’, SharePoint has limited capacities for capturing and keeping records in a way that supports their ability to function as authentic evidence of business.’

In the article ‘Is SharePoint 2010 a compliant records solution‘ in the 30 June 2010 edition of IDM Magazine, the author states the following (emphasis added):

Adam Harmetz, the Lead Program Manager for the SharePoint Document and Records Management engineering team at Microsoft said in a recent online interview about Records in SharePoint 2010, “We constantly get questions from around the world about how to deal with local government and industry standards for information management. Let me throw just a few at you… MOREQ2, VERS, ISO 15489, DOMEA, TNA, ERKS, the list goes on. Some of these standards are loosely based on one another and some have contradictory elements. Rather than focus our engineering efforts on addressing each of these standards in turn, we made the choice to deliver the usability and innovation required to make records management deployments successful and allow our partner ecosystem to build out the SharePoint platform to deal with specific requirements for those customers that are mandated to adhere to a specific standard.”

Despite these comments, SharePoint 2010 was assessed by at least one consultant (Wise Technology Solutions) to meet 88% of the requirements of the then ICA Standard that became ISO 16175 Part 2.

On 16 December 2011, State Records NSW published a blog post titled ‘Initial advice on implementing recordkeeping in SharePoint 2010‘. The post noted that the Wise report had concluded that ‘SharePoint is 88% compliant with the ICA requirements’. It added that the areas where full compliance could not be achieved relate to:

  • ease of email capture
  • native security classification and access control
  • physical and hybrid records management

The report states that third party providers are able to offer products that plug SharePoint’s gaps in these areas.

The blog posted also stated that ‘… the report very clearly makes the point that ‘we note that the achievement of these results is reliant on appropriate design and governance of implementation, configuration and set up to ensure consistency with desired records management outcomes’.’

Early 2010 – Microsoft launches Office 365

Microsoft launched Office 365 on 28 June 2011. Office 365 was designed to be a successor to Microsoft’s Business Productivity Online Suite (BPOS). (Source: Wikipedia article on Office 365). It would not be until the mid 2010s that Office 365 would become an effective counter-solution to the G Suite.

2011 – HP acquires Autonomy

In 2011, Hewlett-Packard acquired Autonomy, a deal that resulted in some interesting subsequent legal issues reading the value of the company.

2011 – OMG Records Management Services standard

The Object Management Group (OMG) released its Records Management Standard (RMS) in September 2011.

As noted in the scope section of the standard, ‘(The) specification provides models for software services to support management activities for electronic records’. Further, ‘… models are provided that describe the platform independent model (PIM) that defines the business domain of Records Management and the RM services to be provided’. Three technology-specific implementations are specified:

  • PSM-1 – Web Services definition for Records Management Services in Web Service Description Language (WSDL). This is actually supplied as ten WSDL files; one for each Records Management Service.
  • PSM-2 – A Records Management Service XSD. The XSD is for use in creating XML files for import/export of Managed Records from compliant environments and to use as a basis for forming XQuery/XPath statements for the query service.
  • PSM-3 – An Attribute Profile XSD. The XSD is for capturing and communicating attribute profiles to permit flexible attribution of certain types of Records Management Objects.

2011 – The death of ERM systems?

In a May 2011 blog post on MoReq2010, James Lappin suggested that traditional systems used to manage electronic documents and records, while not being entirely dead in the water, had ‘lost momentum’.

James proposed two specific reasons for this situation:

  • The global financial crisis (GFC) from 2008 that limited the ability of organisations to acquire and implement hugely expensive ERMS solutions.
  • The rise of Microsoft SharePoint and particularly SharePoint 2010. In some ways, Sharepoint 2010 had the potential to take – and may have already taken – the ERMS wind from the records managers sails.

He also noted that a series of interrelated user-environment issues may have also played a part in the loss of momentum.

  • Usability and take up rates of the ERMS. These solutions are sometimes seen as ‘yet another system’ to manage the same records, using a classification structure that doesn’t make sense to most end users and is different from the way end users see and categorise their world.
  • The ongoing availability of and access to alternative places to store information, including network drives and email folders, and cloud-based storage and email solutions.
  • The rise and general availability of social networking tools and mobile applications used to create and share new forms of information content, and collaborate and communicate, including wikis, blogs, Twitter, Facebook, and similar solutions, often in an almost parallel ‘personal’ world to the official record.
  • The inability of ERMS solutions to manage structured data or to maintain and reproduce easily the diverse range of content created and stored in products like SharePoint. Indeed, one reasonably well known product has been described as an archive for SharePoint, even though the latter can quite easily manage its own archives.
  • The rise of search as a tool to find relevant information in context, and the related change from unstructured to structured in XML-based documents generated by products such as Microsoft Office 2007 and 2010.

From 2013 – GEVER (Switzerland)

From 2013, the Swiss Federal Chancellery was responsible for managing all activities relating to electronic records and process management (Elektronische Geschäftsverwaltung), or GEVER. GEVER consisted of a collection of five standards for the management of electronic records. (Source with current update: Gever Bund)

2015 – Hewlett Packard separates

In October 2015, the software products previously under the Autonomy banner were divided between HP Inc and Hewlett Packard Enterprise (HPE). HP Inc was assigned Autonomy’s content management software components including TeamSite, Qfiniti, Qfiniti Managed Services, MediaBin, Optimost, and Explore.

2015 – EDRMS vendors

Despite the alleged death of ERMS products in around 2010, many continued to thrive and grow. Some were acquired by others.

The following is a list of EDRMS vendors in December 2015 taken from a Gartner report diagram titled ‘Product or Service Scores for Trusted System of Record’ (with the scores included). Many of these products also appeared in the October 2016 ‘Magic Quadrant’ for Enterprise Content Management Systems as indicated)

  • Alfresco (2.47) (also ECM)
  • Open Text (4.07) (also ECM)
  • EMC Documentum (3.94) (as Dell EMC)(Acquired by Open Text)
  • IBM (3.91) (also ECM)
  • HPE (3.85)
  • Oracle (3.45) (also ECM)
  • Laserfiche (2.45) (also ECM)
  • Microsoft (SharePoint) (2.38) (also ECM)
  • Hyland OnBase (2.37) (also ECM)
  • Lexmark (2.32) (also ECM)
  • Newgen (2.18) (also ECM)
  • Objective (2/10) (also ECM)

By 2015 – Oracle departing the scene?

In a July 2015 article titled ‘Looking for an Oracle IPM replacement‘ in the blog softwaredevelopmentforECM, it was noted that Oracle was ‘clearly, and publically, going in a different direction and moving away from traditional enterprise imaging and transactional content management’.

2016 – OpenText, Micro Focus

In May 2016, OpenText acquired HP TeamSite, HP MediaBin, HP Qfiniti, HP Explore, HP Aurasma, and HP Optimost from HP Inc.

2017 – Micro Focus merges with HPE

Micro Focus merged with HPE in September 2017 and in doing so acquired the Content Manager EDRMS (formerly TRIM).

Pre 2021 – EDRM vendors (Australia)

The following is a list of products identified by the Victorian Public Records Office (PROV) in 2020. These products were all certified against the VERS standard, that required organisations to be able to create XML-based VERS Encapsulated Objects (VEOs) for long-term preservation.

  • Alfresco
  • Altus ECM
  • AvePoint RevIM, Records, Cloud Records
  • Bluepoint Content Manager
  • Canon Therefore 2012
  • Docbureau
  • ELOprofessional / ELOenterprise
  • HP Records Manager
  • IBM Enterprise Records
  • IBM FileNet P8 Records Manager
  • Info-Organiser
  • Laserfiche
  • MAGIQ Documents
  • MicroFocus Content Manager
  • Objective
  • Objective ECM
  • OpenText eDOCS RM
  • OpenText Records Management
  • Oracle WebCentre Content
  • RecFind 6
  • RecordPoint
  • Technology One ECM
  • Technosoft OfficeTech

2021 – EDRMS vendors

The following is a list of dedicated vendors that offered EDRMS solutions (and more in most cases) by early 2021. Many of these vendors have a long history not necessarily reflected in the above text. Most of these vendors provide Enterprise Content Management (ECM) services, including EDM and ERM capabilities.

  • Alfresco ECM (
  • Hyland OnBase (
  • IBM ECM (
  • Knowledgeone RecFind EDRM (
  • Laserfiche RME (
  • Lexmark RIM (
  • Micro Focus Content Manager (
  • Microsoft 365 (
  • Newgen RMS (
  • Objective ECM (
  • Open Text ECM (
  • Oracle ECM (
  • TechnologyOne ECM (

2021 – Dedicated EDMS vendors

EDM vendors never went away, but many – like Google Drive, DropBox and Box – were built in and for the cloud. This Capterra website has a fairly detailed listing of current EDMS vendors.

2021 – NEN 2082 withdrawn

In January 2021, the Dutch government withdraw NEN 2082. (NEN 2082:2008 nl)

The future of standards-based ERM/EDRM/ECM systems

Although the definition of a record has remained largely intact for the past two decades – ‘evidence of business activity’ (ISO 15489) – the form of records has evolved and continues to do so.

The ever-expanded world of digital content has made it increasingly difficult to accurately and consistently identify, capture and manage records in all forms, a challenge to the notion that all records can be stored in a single system.

The ‘in place’ approach to managing electronic records – wherever they are stored – has strong appeal. But where will we be in another 20 years? Some thoughts:

  • Electronic databases, whether on-premise or cloud-based (including subscription based), will be the primary method of capturing and storing a wide range of digital content rather than network file shares.
  • Metadata will be automatically captured or auto-generated for all digital content based on the content itself.
  • Artificial Intelligence (AI) will continue to grow in maturity, allowing records to be identified from all other digital content, classified, aggregated, and managed through to disposal/disposition or transfer to archives.
  • Email will, slowly, disappear as the current workforce transitions to chat- and video-based communication methods.
Posted in Archiving third party content, Connectors, Conservation and preservation, Electronic records, Information Management, Microsoft 365, Microsoft Graph, Records management, Retention and disposal, Solutions

Using Microsoft 365 connectors to support records management

Microsoft 365 includes a range of connectors, in three categories, that can be used to support the management of records created by other applications. The three categories are:

  • Search connectors, that find content created by and/or stored in a range of internal and external applications, including social media.
  • Archive connectors, that import and archive content created by third-party applications.
  • API connectors, that support business processes such as capturing email attachments.

This post how these connectors can assist with the management of records.

The recordkeeping dilemma

Finding, capturing and managing records across an ever increasing volume of digital content and content types has been one of the biggest challenges for recordkeeping since the early 2000s.

The primary method of managing digital records for most of the past 20 years has been to require digital records (mostly emails and other digital content created on file shares) to be saved to or stored in an electronic document and records management system (EDRMS). The EDRMS was established as ‘the’ recordkeeping system for the organisation.

EDRM systems were also used to manage paper records which, over the past 20 years, have mostly contained the printed version of born-digital records that remain stored in the systems where they were created or captured.

There were two fundamental flaws in the EDRMS model. The first was an expectation that end-users would be willing to save digital records to the EDRMS. The second was that the original digital record remained in place where it was created or captured, usually ignored but often the source of rich pickings for eDiscovery.

The introduction of web-based email and document storage systems, smart phones, social media and personal messaging applications from around 2005 (in addition to already existing text messaging/SMS messages) further challenged the concept of a centralised recordkeeping system; in many cases, the only option to save these records was to print and scan, screenshot and save the image, or save to PDF, none of which were particularly effective in capturing the full set of records.

The hasty introduction from early 2020 of ‘work from home’ applications such as Zoom and Microsoft Teams has been a further blow to these methods.

In place records management

To the chagrin of records managers around the world, Microsoft never made it easy to save an email from Outlook to another system. Emails stubbornly remained stored in Exchange mailboxes with no sign of integration with file shares.

And for good reason – they have a different purpose and architecture to support that purpose. It would be similar to asking when it would be possible to create and send an email in Word.

The introduction of Office 365 (later Microsoft 365) from the mid 2010s changed the paradigm from a centralised model – where records were all copied to a central location and the originals left where they were created or captured, to a de-centralised or ‘in place’ model – where records are mostly left where they were created or captured.

The decentralised model does not exclude the ability to store copies of some records (e.g., emails) in other applications (e.g., SharePoint document libraries), but these are exceptions to the general rule.

It also does not exclude the ability to import or migrate content from third-party applications where necessary for recordkeeping purposes.

Microsoft 365 connectors

Microsoft 365 includes a wide range of options to connect with both internal and external systems. Many of these connectors simplify business processes and support integration models.

Connectors may also be used to support recordkeeping requirements, in three broad categories.

The three connectors

Archive connectors

Archive connectors allow organisations to import and archive data from third-party systems such as social media, instant messaging and document collaboration* platforms. Most of this data will be stored in Exchange mailboxes, where it can be subject to retention policies, eDiscovery and legal holds.

(*This option is still limited via connectors, but also see below under Search).

The social media and instant messaging data that can be archived in this way currently includes Facebook (business pages), LinkedIn company page data, Twitter, Webex Teams, Webpages, WhatsApp, Workplace from Facebook, Zoom Meetings. For the full listing, and a detailed description of what is required to connect each service, see this Microsoft description ‘Archive third-party data‘.

An important thing to keep in mind is that the data will be archived to an Exchange mailbox; this will require an account to be created for the purpose. Any data archived ot the mailbox will contribute to the overall storage quotas.

Search connectors

Search connectors (also known as Microsoft Graph connectors) index third-party data that then appears in Microsoft search results, including via Bing (the ‘Work’ tab), from, and via SharePoint Online.

Most ECM/EDRM systems are listed, which means that organisations that continue to use those systems can allow end-users to find content from a single search point, only surfacing content that users are permitted to see.

The following is an example of what a Bing search looks like in the ‘Work’ tab (when enabled).

Example Bing search showing the Work tab

Note: as at 17 November 2020, Microsoft’s page ‘Overview of Microsoft Graph connectors‘ (which includes a very helpful architecture diagram) states that these are ‘currently in preview status available for tenants in Targeted release.’

There are two main types of search connector:

  • Microsoft built: Azure Data Lake Storage Gen2, Azure DevOps, Azure SQL, Enterprise websites, MediaWiki, Microsoft SQL, and ServiceNow.
  • Partner built. Includes the following on-premise and online document management/ECM/EDRM connectors – Alfresco, Alfresco Content Services, Box, Confluence, Documentum, Facebook Workplace, File Share (on prem), File System (on prem), Google Drive, IBM Connections, Lotus Notes, iManage, MicroFocus Content Manager (HPE Records Manager, HP TRIM), Objective, OneDrive, Open Text, Oracle, SharePoint (on prem), Slack, Twitter, Xerox DocuShare, Yammer

See the ‘Microsft Graph connectors gallery‘ web page for the full set of current connectors.

A consideration when deploying search connectors is the quality of the data that will be surfaced via searches. Duplicate content is likely to be a problem in identifying the single – or most recent – source of truth of any particular digital record, especially when the organisation has required records to be copied from one system (mailbox/file share) to another (EDRMS).

API Connectors

API connectors provide a way for Microsoft 365 to access and use content, including in third-party applications. To quote from the Microsoft ‘Connectors‘ web page:

‘A connector is a proxy or a wrapper around an API that allows the underlying service to talk to Microsoft Power Automate, Microsoft Power Apps, and Azure Logic Apps. It provides a way for users to connect their accounts and leverage a set of pre-built actions and triggers to build their apps and workflows.’

To see the complete list and for more information about each connector, see the Microsoft web page ‘Connector reference overview‘.

Each connector provides two things:

  • Actions. These are changes initiated by an end-user.
  • Triggers. There are two types of triggers: Polling and Push. Triggers may notify the app when a specific event occurs, resulting in an action. See the above web page for more details.

API connectors can support records management requirements in different ways (such as triggering an action when a specific event occurs) but they should not be confused with archiving or search connectors.

Summing up

The connectors available in Microsoft 365 support the model of keeping records in place where they were first created or captured. They enable the ability to archive data from third-party cloud applications, search for data in those (and on-premise) applications, and triggers actions based on events.

The use of connectors should be part of an overall strategic plan for managing records across the organisation. This may include a business decision to continue using an ECM/EDRMS in addition to the content created and captured in Microsoft 365. Ideally, however, the content in the ECM/EDRMS should not be a copy of what already exists in Microsoft 365.

Posted in Correspondence Management, Flow, Information Management, Microsoft Teams, Office 365 Groups, Products and applications, SharePoint Online, Solutions

Managing correspondence in SharePoint Online including using Teams and Flow

Many (if not most) organisations receive and respond to correspondence in the form of letters or emails. They may also respond to social media messages.

Correspondence may be managed in different ways. For example, some organisations may have a dedicated business correspondence unit while in others individuals or business areas may respond.

This post describes how SharePoint Online with MS Teams and MS Flow could be used to manage letters and emails that require a formal ‘organisational’ response. It does not look at managing responses to social media messages.

Core elements

The management of correspondence that requires a formal response generally involves the following elements:

  • Somewhere to store the incoming correspondence (including scanned paper documents) and responses.
  • A description of the correspondence (naming conventions and/or metadata).
  • Some form of workflow, including emails, used to notify people of actions they must take.
  • Various methods use to report on and track progress, and closure/completion rates.

SharePoint includes all these elements. The requirement for workflow can be met using emails, the built-in workflows, workflows built in SharePoint Designer, or MS Flow. MS Teams provides the opportunity to add additional value to the communication response process by allowing messaging, co-authoring of responses, approval processes, and more.

A model correspondence system

The model correspondence system described below is based on a correspondence management system that I developed for a large public sector organisation a few years ago, but using a different system.

The core elements of the model system are:

  • An Office 365 (O365) Group. The O365 Group has an email address and an associated SharePoint site.
  • The Office 365 Group’s SharePoint site.
  • A Team in MS Teams, connected to the O365 Group.
  • Microsoft Flow.

Office 365 Group

The O365 Group should have a name that reflects its purpose and makes it easy to recognise as it also becomes the email address name.

  • For example ‘GRP_Correspondence’ – the prefix ‘GRP’ is used as it defines it as an O365 Group, as opposed to a Security Group (SG) or Distribution List (DL) created under the same ‘Groups’ section in the O365 Admin portal.

The Members of the Group should be the group of people primarily responsible for managing responses to the correspondence. Other people can be invited to the SharePoint site directly (without having access to the Group’s Team) as Members or Visitors.

SharePoint site

The O365 Group’s SharePoint site has the same name in the URL – GRP_Correspondence.

The SPO site should have at least one document library with an obvious name, for example ‘Correspondence 2019’.

If there is concern about potentially long URL lengths, the library name could be reduced to, say ‘Corro2019’; the display name can still be ‘Correspondence 2019’.

Consideration might also be given to having a ‘drop off library’ in the Group site where anyone can save correspondence that may require a response.

The metadata required in the document library will vary between organisations. The core default metadata (for every new document library) already includes all the following:

  • Title
  • Created (date)
  • Created by
  • Modified (date)
  • Modified by
  • Version
  • Document ID (when enabled as a Site Collection feature, which is recommended)
  • Shared with
  • Shared with details
  • Check In Comment
  • Checked Out To
  • File Size
  • Folder Child Count
  • Item Child Count (shows how many documents in a folder)
  • Label setting
  • Retention label
  • Retention label Applied
  • Sensitivity

Additional metadata may include any of the following:

  • Sender (free text or potentially drop down choice)
  • Response Due date (Date)
  • Urgency (Choice – Routine, Urgent)
  • Description (free text)
  • Reply Status (Choice – Not required, Draft, Approved, Sent, Cancelled)
  • Response Type (Not required, By email, By letter)
  • Approved by (internal Active Directory name)
  • Date Completed (Date) < This date should correspond to the date on any reply.

Once the library has been created, content can be added.

  • Paper correspondence can be scanned and saved to the library. Many MFD (printers) now have the ability to save directly to SharePoint, perhaps to a drop-off library for categorisation and review before being moved to the primary library. The original paper can then be boxed and destroyed after a given period (3 – 6 months).
  • Emails can (and should) be copied from the Group’s inbox to the library (see screenshot below). To do this, sync the library to File Explorer and drag and drop.


A new folder can be created for each new correspondence, as indicated in the screenshot below:


Naming conventions

Both the correspondence and the folders where it is stored should be named according to naming conventions. Naming conventions can also be used instead of folders, to indicate the connection between the original and the reply. My preference is to use folders to group the original and the reply, and also because they are ubiquitous in the digital workplace.

Suggested naming conventions:

  • Folders: Surname-Subject-Date
  • Emails: EMAIL-Surname-Subject-Date
  • Documents: LETTER-Surname-Subject-Date
  • Replies: REPLY-Surname-Subject-Date-DRAFT or FINAL (the final version may be ‘signed’ and then saved as a PDF)

Always exclude spaces in names, as these will be replaced by ‘%20’ in the URL path.

If one or more standard templates are required for replies:

  • Create the new Site Content Type in the Site Content Types area.
  • Enable the management of content types in the ‘Advanced’ section of the document library settings.
  • Add the new Site CT to the library
  • Add or edit the Word template to be used by clicking on the Content Type in the ‘Content Types’ section, then clicking on ‘Advanced settings’ and ‘upload’. The template can continue to be modified as required directly from this area and ensures consistency in replies.

The new Content Type will appear in the ‘New’ menu in the document library but not in the MS Teams ‘New’ dialogue (see below). This means that standard replies using a template can only (currently) be created via the SharePoint library. Drafts, however, could be created with a standard document template first (same with emails, see below).

SharePoint New options

MS Team

The Team in MS Teams can be connected to the O365 Group (it’s a one to one relationship, you cannot connected multiple O365 Groups with a single MS Team).

The Team can have multiple channels, and the SPO document library can be presented in a channel. For example, the channel named ‘Correspondence 2019’ includes the ‘Correspondence 2019’ document library as a tab, as shown below.


The use of Teams means allows drafts to be co-authored and chats to take place about the correspondence and other matters.

If the SharePoint site includes an ‘incoming correspondence’ drop off library, the Team could have a channel with that library as a tab. The channel could then be used to review and decide on what to do with the correspondence.

Routing incoming correspondence for a reply

Once the correspondence is saved in a SharePoint document library, a decision must be taken by someone whether a reply is required.

  • If no reply is required, this can be reflected in the metadata (‘No reply required’).
  • If a reply is required, the correspondence must be ‘sent’ or otherwise made available (see below) to someone to draft a reply. This can be a simple or complex process.
    • In some cases, a standard reply may be possible. The SharePoint site should contain at least one library that contains examples of standard replies to certain types of, or common, questions.

Simple routing

The easiest way to ‘send’ someone the correspondence for action is to use the ‘Share’ option on the folder where the incoming correspondence is stored. As the same ‘Share’ option appears in File Explorer when the library is synced, the sharing process can also be managed from File Explorer.

This means that the recipient only has to click on the folder link in the email they receive to see the content of the folder. As they have access to the folder, they can then use the ‘New’ option to create a draft reply, including to an email.


Once the draft has been finalised, it can also be sent via the ‘Share’ option. Alternatively, an alert on the library will notify anyone who needs to be notified that a change has been made to the library.

Routing using MS Flow

A more complex routing process may be required if the draft requires several steps, for example:

  • Send to someone to create the draft reply.
  • Draft reply gets sent to someone else for approval.
    • If not approved, goes back to the person who created it. (This can loop several times)
    • If approved, a message is sent to the person who needs to finalise it
  • Reply is finalised, metadata is updated, and reply sent.

All SharePoint Online libraries include an in-built Flow workflow ‘Request Sign Off’. When a document is selected and the ‘Request Sign Off’ option is selected the first time, the person must select the option to ‘Create Flow’. The ‘Run Flow’ dialogue then appears, requiring someone to be identified as the Approver and a Message to be included. The approver can be anyone in the organisation, for example the person’s manager.



The Approver receives an email, allowing them to approve or reject, and add a comment. If rejected, the ‘Sign Off Status’ column in the SharePoint library is updated to ‘Rejected’, and the sender receives a message to advice them that approval was rejected.


If approved, the sender receives an email to notify them, and the ‘Sign off status’ column changes to ‘Approved’.

Once the reply has been approved, it can be finalised and sent to the person who wrote the correspondence. All versions of the draft reply are kept in the same folder, along with the final.

Email replies

Once approved, any email reply could be sent directly to the correspondent from the O365 Group’s mailbox.


Metadata from the document library can be exported to Excel, or to business intelligence systems (or PowerBI) for analysis and reporting purposes.

Summing up

Correspondence can be managed in SharePoint, with MS Teams used to provide additional co-authoring and ‘chat’ options for the team, and MS Flow used for more complex approval requirements.